Word vs. Class-Based Word Sense Disambiguation
نویسندگان
چکیده
منابع مشابه
Word vs. Class-Based Word Sense Disambiguation
As empirically demonstrated by the Word Sense Disambiguation (WSD) tasks of the last SensEval/SemEval exercises, assigning the appropriate meaning to words in context has resisted all attempts to be successfully addressed. Many authors argue that one possible reason could be the use of inappropriate sets of word meanings. In particular, WordNet has been used as a de-facto standard repository of...
متن کاملClass-based collocations for Word Sense Disambiguation
This paper describes the NMSU-Pitt-UNCA word-sense disambiguation system participating in the Senseval-3 English lexical sample task. The focus of the work is on using semantic class-based collocations to augment traditional word-based collocations. Three separate sources of word relatedness are used for these collocations: 1) WordNet hypernym relations; 2) cluster-based word similarity classes...
متن کاملWord Sense vs. Word Domain Disambiguation: A Maximum Entropy Approach
In this paper, a supervised learning system of word sense disambiguation is presented. It is based on conditional maximum entropy models. This system acquires the linguistic knowledge from an annotated corpus and this knowledge is represented in the form of features. The system were evaluated both using WordNet’s senses and domains as the sets of classes of each word. Domain labels are obtained...
متن کاملWord Sense Disambiguation vs. Statistical Machine Translation
We directly investigate a subject of much recent debate: do word sense disambigation models help statistical machine translation quality? We present empirical results casting doubt on this common, but unproved, assumption. Using a state-ofthe-art Chinese word sense disambiguation model to choose translation candidates for a typical IBM statistical MT system, we find that word sense disambiguati...
متن کاملWord Domain Disambiguation via Word Sense Disambiguation
Word subject domains have been widely used to improve the performance of word sense disambiguation algorithms. However, comparatively little effort has been devoted so far to the disambiguation of word subject domains. The few existing approaches have focused on the development of algorithms specific to word domain disambiguation. In this paper we explore an alternative approach where word doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2015
ISSN: 1076-9757
DOI: 10.1613/jair.4727